A Finitely Axiomatized Formalization of Predicate Calculus with Equality
نویسنده
چکیده
We present a formalization of first-order predicate calculus with equality which, unlike traditional systems with axiom schemata or substitution rules, is finitely axiomatized in the sense that each step in a formal proof admits only finitely many choices. This formalization is primarily based on the inference rule of condensed detachment of C. A. Meredith. The usual primitive notions of free variable and proper substitution are absent, making it easy to verify proofs in a machine-oriented application. Completeness results are presented. The example of Zermelo-Fraenkel set theory is shown to be finitely axiomatized under the formalization. The relationship with resolution-based theorem provers is briefly discussed. A closely related axiomatization of traditional predicate calculus is shown to be complete in a strong metamathematical sense.
منابع مشابه
A Finitely Axiomatized Formalization of Predicate Calculus with Equality
We present a formalization of first-order predicate calculus with equality which, unlike traditional systems with axiom schemata or substitution rules, is finitely axiomatized in the sense that each step in a formal proof admits only finitely many choices. This formalization is primarily based on the inference rule of condensed detachment of C. A. Meredith. The usual primitive notions of free v...
متن کاملA Finitely Axiomatized Formalization of Predicate Calculus with Equality
We present a formalization of first-order predicate calculus with equality which, unlike traditional systems with axiom schemata or substitution rules, is finitely axiomatized in the sense that each step in a formal proof admits only finitely many choices. This formalization is primarily based on the inference rule of condensed detachment of C. A. Meredith. The usual primitive notions of free v...
متن کاملA Finitely Axiomatized Formalization of Predicate Calculus with Equality
We present a formalization of first-order predicate calculus with equality which, unlike traditional systems with axiom schemata or substitution rules, is finitely axiomatized in the sense that each step in a formal proof admits only finitely many choices. This formalization is primarily based on the inference rule of condensed detachment of C. A. Meredith. The usual primitive notions of free v...
متن کاملA Finitely Axiomatized Formalization of Predicate Calculus with Equality
We present a formalization of first-order predicate calculus with equality which, unlike traditional systems with axiom schemata or substitution rules, is finitely axiomatized in the sense that each step in a formal proof admits only finitely many choices. This formalization is primarily based on the inference rule of condensed detachment of C. A. Meredith. The usual primitive notions of free v...
متن کاملA Finitely Axiomatized Formalization of Predicate Calculus with Equality
We present a formalization of first-order predicate calculus with equality which, unlike traditional systems with axiom schemata or substitution rules, is finitely axiomatized in the sense that each step in a formal proof admits only finitely many choices. This formalization is primarily based on the inference rule of condensed detachment of C. A. Meredith. The usual primitive notions of free v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Notre Dame Journal of Formal Logic
دوره 36 شماره
صفحات -
تاریخ انتشار 1995